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Some time ago, Fisher and de Gennes pointed out that long-ranged correlations
in a fluid close to its critical point Tc cause distinct effective forces between
immersed colloidal particles which can even lead to flocculation [C. R. Acad.
Sc. Paris B 287:207 (1978)]. Here we calculate such forces between pairs of
spherical particles as function of both relevant thermodynamic variables, i.e.,
the reduced temperature t=(T − Tc)/Tc and the field h conjugate to the order
parameter. This provides the basis for specific predictions concerning the phase
behavior of a suspension of colloidal particles in a near-critical solvent.
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1. INTRODUCTION

In 1978 Fisher and de Gennes (1) predicted that the confinement of critical
fluctuations of the order parameter in a binary liquid mixture near its cri-
tical demixing point Tc gives rise to long-ranged forces between immersed
plates or particles. In particular, they pointed out that these long-ranged
forces would eventually lead to the flocculation of colloidal particles which
are dissolved in a near-critical binary liquid mixture. (2) A few years later,
such a solvent-mediated flocculation was observed experimentally for silica
spheres immersed in the binary liquid mixture of water and 2,6-lutidine. (3, 4)

However, the precise interpretation of these experiments is still under



debate; although fluctuation-induced forces as predicted by Fisher and de
Gennes certainly play a major role, additional mechanisms, such as screening
effects in the case of charged colloidal particles, (3) may also contribute. (5) In
the meantime additional experimental evidence for this kind of flocculation
phenomena has emerged for other binary mixtures acting as solvents. (6–8)

From a colloid physics perspective effective, solvent-mediated interac-
tions between dissolved colloidal particles are of basic importance. (9–12) The
richness of the physical properties of these systems is mainly based on the
possibility to tune these effective interactions over wide ranges of strength
and form of the interaction potential. Traditionally, this tuning is accom-
plished by changing the chemical composition of the solvent by adding salt,
polymers, or other components. (9–12) Compared with such modifications,
changes of the temperature or pressure typically result only in minor
changes of the effective interactions. On the other hand, however, effective
interactions generated by bringing solvents close to a phase transition of
their own are extremely sensitive to such changes. In this broader context,
flocculation of colloidal particles induced by critical fluctuations near a
second-order phase transition of the solvent as predicted by Fisher and de
Gennes (1, 2) provided the first instance in which effective interactions are
tuned by changing the physical conditions rather than the chemical com-
position of the solvent. Later on, this idea has been extended to first-order
transitions of the solvent, for which wetting transitions can occur which
give rise to wetting films of the preferred phase coating the colloidal par-
ticles. (13–16) In the meantime the study of effective interactions between
dissolved particles generated by changing the physical conditions of the
solvent, and the resulting phase behavior of the colloidal suspension, has
emerged as one of the main fields of research in colloid physics. (14)

The physical origin of the force predicted by Fisher and de Gennes is
analogous to the Casimir force between conducting plates, which arises due
to the confinement of quantum mechanical vacuum fluctuations of the
electromagnetic field. (17–20) (Related phenomena play a role for the string
tension in quantum chromodynamics(23) and occur in microemulsions (22)

and liquid crystals (see, e.g., ref. 21). However, in contrast to the present
critical-point Casimir effect, in liquid crystals the director-fluctuation
induced forces are notoriously difficult to separate from the background of
dispersion forces due to the absence of a singular temperature depen-
dence. (24)) In recent years this critical-point Casimir effect has attracted
increasing theoretical (25–29) and experimental (5, 30, 31) interest. In this case the
fluctuations are provided by the critical order parameter fluctuations of a
bona fide second-order phase transition in the corresponding bulk sample.
For He4 wetting films close to the superfluid phase transition the theoretical
predictions (26) for critical Casimir forces between parallel surfaces exhibiting
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Dirichlet boundary conditions have been confirmed quantitatively.(31) These
quantum fluids offer the opportunity to study critical Casimir forces in the
absence of symmetry-breaking surface fields, i.e., the purely fluctuation
induced forces.

In a classical binary liquid mixture near its critical demixing point, the
order parameter is a suitable concentration difference between the two
species forming the liquid. In this case the inevitable preference of confin-
ing boundaries for one of the two species results in the presence of effective
surface fields leading to nonvanishing order parameter profiles even at
T \ Tc. (32) (This is the case discussed by Fisher and de Gennes. (1, 2)) These
so-called ‘‘critical adsorption’’ profiles become particularly long-ranged due
to the correlation effects induced by the critical fluctuations of the order
parameter of the solvent. In the case of a planar wall, critical adsorption
has been studied in much detail. (33–40) The asymptotic behavior of critical
adsorption is described by a fixed point with infinitely large surface field.
This holds for distances which are large compared with both atomic length
scales and the length scale set by the actual finite strength of the symmetry-
breaking surface field. Later on, critical adsorption on curved surfaces of
single spherical and rodlike colloidal particles has been studied, where it
turns out, in particular, that critical adsorption on a microscopically thin
‘‘needle’’ represents a distinct universality class of its own. (41, 42) Critical
adsorption on the rough interface between the critical fluid and its noncri-
tical vapor occurring at the critical end point of the binary liquid mixture
has been addressed as well; (43) likewise the effect of quenched surface
modulations and roughness. (44) The interference of critical adsorption on
neighboring spheres gives rise to the critical Casimir forces which have been
argued to contribute to the occurrence of flocculation near Tc. (2, 45–47)

However, a quantitative understanding of these phenomena requires the
knowledge of the critical adsorption profiles near the colloidal particles and
the resulting effective free energy of interaction in the whole vicinity of the
critical point, i.e., as function of both the reduced temperature t=(T − Tc)/Tc

and the bulk field h conjugate to the order parameter. So far, this ambi-
tious goal has not yet been accomplished. Instead, the introduction of the
additional complication of a surface curvature has limited the knowledge of
the corresponding critical adsorption so far to the case of spheres for the
particular thermodynamic state (t, h)=(0, 0) of the solvent. (45, 48–50)

In a previous work, (47) at least the temperature dependence of the cri-
tical Casimir force between a sphere and a planar container wall has been
discussed. It turns out that the force becomes maximal not at but above Tc.
In ref. 47 also the force F between a pair of spheres of radius R at distance
D+2R between their centers (see Fig. 1) has been briefly analyzed. Close to
the critical demixing point, this force separates into a regular background
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Fig. 1. The geometry of two equal neighboring spheres.

contribution and a singular contribution F±
sing of universal character, which

is attractive if the same of the two coexisting bulk phases is enriched near
both spheres. The results for F±

sing can be cast into the form

F±
sing(D, R; t, h)=

kBTc

R
K±

1D=
D
R

, G±=
D
t±

, X=sgn(h)
D
lH

2 , (1.1)

where t=t± is the true correlation length governing the exponential decay of
the order parameter correlation function in the bulk for t=(T− Tc)/Tc Z 0
at h=0; lH is the correlation length governing the exponential decay of the
order parameter correlation function for h Q 0 at t=0. K± are universal
scaling functions. Note that surface fields h1 break the symmetry h Q − h,
i.e., F±

sing depends on the sign of X. Here and in the following we consider
only the fixed point value h1 Q +..

The aim of this work is to study the critical Casimir force between two
spherical colloidal particles as function of both relevant thermodynamic
variables t and h. Figure 2 shows the schematic phase diagram of the
solvent, e.g., a binary liquid mixture. Different thermodynamic paths are
indicated along which the dependence of the force on t and h is studied.
The remainder of this work is organized as follows: In Section 2 we define
the field-theoretic model used to describe the near-critical solvent. In Sec-
tion 3 the numerical calculation of the adsorption profiles in mean-field
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Fig. 2. Schematic phase diagram of a binary liquid mixture consisting of A and B particles
in terms of temperature T and concentration cA of A particles. The shaded area is the two
phase region—ending in the critical point CP—which separates the A-rich and the B-rich
phase. The relevant thermodynamic variables near the critical point are t and h. Three differ-
ent thermodynamic paths are indicated as considered in the main text.
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approximation is discussed. In Section 4 we present the results for the force
between two spherical particles and compare them with the limiting cases
of small and large particle radii. The discussion of the results for two
parallel plates, which inter alia are relevant for a pair of spheres via the
Derjaguin approximation, is left to Section 5. Finally, in Section 6, we
summarize and discuss our results with regards to the phase behavior of a
suspension of colloidal particles in a near-critical fluid.

2. FIELD-THEORETIC MODEL

Near criticality the behavior of the system is governed by fluctuations
of the order parameter F on a large length scale such that the emerging
universal properties are independent of microscopic details. A coarse-
graining procedure leads to the continuum description in terms of the
Ginzburg–Landau Hamiltonian (33, 34, 51)

H{F(r)}=F
V

ddr 31
2

[NF(r)]2+
y

2
F2(r)+

u
24

F4(r) − hF(r)4 (2.1)

of an order parameter field F(r) in the bulk of volume V. For the liquids
considered here F(r) is a scalar field. The Hamiltonian determines the sta-
tistical weight exp[ −H{F(r)}] of the configuration {F(r)}. The external
bulk field h is conjugate to the order parameter and breaks its symmetry.
Power counting would allow for the occurence of symmetry-breaking cubic
terms F3(r); however, they are irrelevant. (52) The temperature dependence
enters via

y ’ t=
T − Tc

Tc
. (2.2)

For a discussion of how t and h translate into the relevant variables for
binary liquid mixtures see, cf., Section 4.7.

The partition function of the system is given by

Z(y, h; u)=F D{F} exp[ −H{F(r)}], (2.3)

where D{F} denotes an appropiately defined functional integration. (34) The
corresponding singular part of the free energy reads

Fsing(y, h; u)=−kBTc ln Z(y, h; u). (2.4)
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The coarse-graining procedure leading to a continuum model from a
given lattice model can be generalized to systems with surfaces resulting in
the Hamiltonian (33, 34)

H{F(r)}=F
V

ddr 31
2

[NF(r)]2+
y

2
F2(r)+

u
24

F4(r) − hF(r)4

+F
S

dS 3 c
2

F2(rS) − h1F(rS)4 . (2.5)

The first integral runs over the volume V available for the critical medium,
which is bounded by the surface(s) S=“V. Apart from the restricted space
integration, the first integral in Eq. (2.5) has the same form as the Hamil-
tonian (2.1) for bulk systems disregarding surfaces. The second integral in
Eq. (2.5) represents a surface contribution in which the integral runs over
the boundary surface S=“V; c is related to the strength of the coupling of
critical degrees of freedom near the surface and h1 is the surface analogue
of the bulk field h. (33, 34)

The systematic treatment of the critical fluctuations as implied by
Eq. (2.3) and a justification of the form of H{F(r)} is provided by the field-
theoretic renormalization group framework. (34) The basic idea is to consider
the physical system on larger and larger length scales. It turns out that near
the critical point the behavior of the system under the repeated action
of such scale transformations is captured by the Hamiltonian given in
Eq. (2.5). (51) For bulk systems, there remain only two relevant adjustable
parameters, corresponding to y and h. The surface generates a subdivision
of a given bulk universality class into different surface universality classes
characterized by different fixed point values for c and h1. For h1=0 the
corresponding leading singular behaviors are determined by the fixed-point
values c=+. for the ordinary transition (O), c=0 for the special or
surface-bulk transition, and c=−. for the extraordinary or normal tran-
sition (E). (33, 34) For the O and E transitions only y, h, and h1 remain as
relevant variables. The three cases above were originally studied for mag-
netic systems. For liquids, however, E is the generic case and therefore it is
called the normal transition. The case h1=. with c arbitrary corresponds
to critical adsorption, but the leading singular behavior is the same as for
the E transition. (37)

Neglecting fluctuations the Ginzburg–Landau Hamiltonian H{F(r)}
itself represents a free energy functional which upon minimization with
respect to F(r) yields the Euler–Lagrange equations for order parameter
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profiles and correlation functions. The minimization is equivalent to the
mean-field description of the system,

dH{F(r)}
dF(r)

:
F=OFP

=0, (2.6)

where the fluctuating order parameter F is replaced by its mean value OFP.
The universal critical behavior is captured correctly by mean-field theory if
the space dimension d exceeds the upper critical dimension duc=4.

Because of the relative complexity of the geometry considered here (see
Fig. 1), it is not possible to carry out the complete renormalization proce-
dure in closed form. Instead, available knowledge for bulk systems in d=3
is used in combination with the mean-field solution for the geometry con-
sidered here in order to estimate universal quantities in d=3. An alterna-
tive way to overcome mean-field theory is followed within the concept of
the Local Functional Theory developed in refs. 53–56, in which the free
energy is described by a functional depending locally on the order param-
eter and its derivative. With mean-field theory as a special case, it takes
into account available knowledge in d=3, such as the correct values for
the critical exponents.

3. ORDER PARAMETER PROFILES

In this section we describe some technical aspects of the tools and
numerical methods used for obtaining the mean-field results, i.e., the
determination of the order parameter profiles at the critical point, the short
distance expansion of the profile close to a surface, the minimization pro-
cedure to determine the profiles away from the critical point, and the cal-
culation of the force between the particles based on the stress tensor.

Minimization in Eq. (2.6) leads to the differential equation

− Dm+ym+m3 − H=0, (3.1)

where the coupling constant u is absorbed in the order parameter and in
the bulk magnetic field,

m==u
6
OFP, H==u

6
h. (3.2)

Note that we are interested in an estimate of the order parameter profile m
in d=3 where, at the fixed point, u is a positive number. For d q 4 the
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mean-field solution is exact, but the fixed point value of the coupling con-
stant u vanishes in this limit.

The surface integrals in Eq. (2.5) lead to a boundary condition for the
order parameter at the surfaces of the spherical particles. At the critical
adsorption fixed point this boundary condition is given by

FS=.. (3.3)

3.1. Order Parameter Profiles at Criticality

While our main interest is the dependence of the Casimir force on t
and h, the knowledge of the order parameter profile at the critical point,
i.e., for (t, h)=(0, 0), is a useful starting point. In ref. 49 this latter profile
is given for a critical system confined to a spherical shell between two con-
centric spheres with radii R± at which the order parameter diverges. In
terms of elliptic functions it reads

m(r)=

=1 − k2

k2 − 1
2

r cn 1= 1
2k2 − 1

ln 1 r
R0

22
, (3.4)

where r is the radial distance from the common center of the spheres and k
is the module of the elliptic function cn. (57) The module k must be adjusted
such that the profile diverges at the given radii R± leading to the following
implicit equation for k:

R±

R0
=1R+

R−

2± 1
2
=exp(± `2k2 − 1 K(k)), (3.5)

where R0=`R+R− is the geometric mean of the radii and K is the
complete elliptic integral of the first kind.

In ref. 45 it is outlined how the results for concentric spheres can be
used for different geometries via a conformal transformation (58) of the
coordinates,

r −

|r −|2=
r+R

|r+R|2 −
R

2 |R|2 , (3.6)

where r − and r are the new and the old coordinates, respectively, and R
defines the symmetry axis and the eventual shape of the new geometry. For
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|R|=R0 the two concentric spheres with radii R± are mapped onto two
spheres of equal size which is the generic case we are interested in. For
|R|=R+ the two concentric spheres are mapped onto a single spherical
particle in front of a planar wall for which results were obtained in ref. 47.

Under the conformal transformation (3.6), each local scaling field is
multiplied by a scale factor

b(r −)=1+
R · r −

|R|2 +
|r −|2

4 |R|2 , (3.7)

which is raised to the power of the scaling dimension of this scaling field.
In mean-field approximation and d=4, the scaling dimension of the order
parameter F is 1, which implies for the order parameter profile

m(r −)=b(r −)−1 mconc(|r(r −)|), (3.8)

where mconc(|r|) is the profile in the concentric geometry given by Eq. (3.4).
Let D denote the surface-to-surface distance between the two spheres

and R their common radius; then the corresponding radii R± in the con-
centric geometry are given by

R±=
D
4

A 1A+1
A − 1

2 ± 1

(3.9)

with the abbreviation

A==1+4
R
D

. (3.10)

Putting the pieces together, Eqs. (3.2)–(3.9) yield the order parameter
profile in the geometry of two spherical particles with radius R a distance D
apart from each other right at the critical point (t, h)=(0, 0).

3.2. Short Distance Expansion

In the following we describe the methods for obtaining results off cri-
ticality, i.e., for t Z 0 and h ] 0, i.e., y Z 0 and H ] 0. Equation (3.1) will
then yield a different profile m(r −). However, the profile at the critical point
serves as a suitable starting point for the minimization procedure (2.6).
Close to the surfaces it is even possible to calculate the deviation of the
order parameter from the profile at the critical point analytically. In this
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context the so-called short distance expansion turns out to be useful, and
has been carried out for y Z 0 in ref. 41. With H ] 0 in addition, it reads:

m(s Q 0; R, y, H)=
`2

s
−

`2

6

d − 1
R

+
`2

6
s 3 − y+55

6
(d − 1)2

R2 −
(d − 1)(d − 2)

R2
64

+
`2

4
s2 1 H

`2
−

d − 1
3 R

y −
4d3 − 39d2+120d − 85

54 R3
2+O(s3),

(3.11)

where s is the radial distance from the surface of a sphere with radius R.
The difference dm=m(s Q 0; R, y, H) − m(s Q 0; R, y=0, H=0) gives the
deviation from the profile at the critical point close to the surfaces. While
the profile itself diverges at the surfaces, the deviation dm vanishes with the
radial distance s as

dm(s Q 0; R, y, H)=−
`2

6
ys+

1
4
1H −

`2

3

d − 1
R

y2 s2+ · · · , (3.12)

where the bulk field H and the radius R of the spherical particles appear
only in O(s2) and higher order. Equation (3.11) is only valid for small s
since the presence of the second particle is neglected. Corrections to
Eqs. (3.11) and (3.12), however, are of order O(s3) as derived for the case
of parallel plates, where they are called distant wall corrections. (1, 59)

3.3. Numerical Solution for the Complete Profiles off Criticality

So far we have provided results for the order parameter profile at the
critical point for the two sphere geometry [Eq. (3.8)] and off criticality but
close to the surface of a single sphere [Eq. (3.11)]. In order to obtain the
complete order parameter profile away from the critical point for the
geometry consisting of two spheres with equal size (see Fig. 1) additional,
numerical effort is required.

Upon discretization the order parameter profile m(r −; D, R; y, H) in
the two sphere geometry (Fig. 1) is described by a set of parameter values
aij where i and j indicate the dependence on the two independent spatial
variables required for the present cylindrical symmetry around the axis
between the two centers of the spheres [see, cf., Eq. (3.15)]:

m(r −; D, R; y, H)=m({aij}). (3.13)
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Within mean-field theory H({ai, j}) has to be minimized with respect to
{aij} for given D, R, y, and H. To this end we apply the method of steepest
descent, (60)

a (n+1)
ij =a (n)

ij − o
“H({aij})

“aij

:
a(n)

ij

, (3.14)

where o is a positive number and a (n)
ij is the nth iteration of the param-

eter aij.
It is known that in general the method of steepest descent converges

slowly. Nevertheless in the present case it is found to be useful since the
dependence on the choice of the initial set of parameters {a(0)

ij } is weak. In
fact, it turns out that the profile at the critical point is a rather useful start-
ing profile. The convergence also depends on the value of o: if it is chosen
too large, the convergence breaks down, if it is chosen too small, the con-
vergence becomes too slow. As we will discuss later, one advantage of the
present minimization method is that the explicit evaluation of the Hamil-
tonian H is not necessary, since only the gradient “H({aij})

“aij
is needed, which

can be obtained independently. In order to keep this advantage, iterative
methods to determine the best choice for the value of o, which explicitly
need the value of the functional that is to be minimized, are not applied.
Nonetheless the best choice of o is the largest value for which the mini-
mization still proceeds.

In particular, we use the parametrization

m(r −

ij; D, R; y, H)=m(r −

ij; D, R; 0, 0)+aij, (3.15)

where r −

ij denotes discretized spatial positions in the two sphere geometry,
m(r −

ij; D, R; 0, 0) is the value of the order parameter profile for (y, H)=
(0, 0) at those positions, according to Eq. (3.8), and aij denotes the devia-
tion from this value at the position r −

ij used in the minimization procedure
(3.14). Thus starting the procedure with the profile for (y, H)=(0, 0)
implies the choice

a (0)
ij =0, -i, j . (3.16)

In addition, Eq. (3.12) provides the behavior of the aij for r −

ij close to the
surface, i.e., a (n)

ij =0 for all n if r −

ij=r −

S. From Eq. (3.12) even the slope of a
function f(s) used for interpolating the aij as function of the radial dis-
tance s from the surface of the sphere is known for s Q 0.

The cylindrical symmetry of the problem allows one to consider the
planar geometry depicted in Fig. 1. Instead of discretizing the space by a
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square lattice we use a lattice which takes into account that there are areas
with strong changes in the order parameter m, i.e., close to the surfaces,
and areas with weak changes, i.e., far away from the spheres. In those areas
with weak changes less lattice points are needed. For this purpose we use
what we call the conformal lattice. The idea is to use the conformal
mapping (3.6) in order to create this lattice from that one for the case of
concentric spheres. (58) In analogy to electrostatics the field lines and the
lines of equal potential of a system with two concentric spheres forming the
two electrodes of a capacitor are mapped onto the two sphere geometry
such that the new lines are the field lines and the lines of equal potential of
a system with two charged spheres. The intersections of these lines form the
lattice sites of the conformal lattice. The advantage of this lattice is that the
field lines approach the spheres perpendicularly to their surface, which
allows one to use the short distance behavior [Eqs. (3.11) and (3.12)] as a
boundary condition for the aij. Figure 3 shows the conformal lattice for the
geometry of two spheres. In principle, it would be possible to use only one
half of this lattice, since this system is symmetric with respect to the vertical
midplane. However, this reduction leaves one with a disadvantage. The
value of the order parameter at this midplane wall is not known, and thus
it must be determined within the minimization process. The minimization
turns out to be inefficient then. Therefore for the two sphere geometry we
resort to the full conformal lattice enclosing both spheres as shown in Fig. 3.

The Hamiltonian H [Eq. (2.5)] is given by

H=
6
u

F
V

dV L(m)+
6
u

F
S

dS LS(m), (3.17)

with

L(m)=
1
2

(Nm)2+
y

2
m2+

1
4

m4 − Hm (3.18)

and LS(m)=c
2 m2 − H1m with H1=h1 `u/6. Performing the functional

derivative with respect to the order parameter m leads, via partial integra-
tion, to

dH{m(r)}
dm(r)

=
6
u

F
V

dV{ − Dm+ym+m3 − H}+
6
u

F
S

dS{ − “nm+L −

S(m)},
(3.19)

where “nm is the derivative of the order parameter in direction of the
surface normal. We note that the surface integral vanishes, if the boundary
conditions [Eqs. (3.11) and (3.12)] are fulfilled. Equation (3.14) contains
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.

Fig. 3. The conformal lattice (bottom) for two spheres of diameter 2R at distance D (see
Fig. 1) as obtained from the lattice between concentric spheres of diameter 2R+ and 2R− ,
respectively. (For the purpose of clear visibility here the two lattices are shown on different
scales.) The sphere with diameter 2R0=2 `R+ R− is mapped onto the vertical midplane of
the conformal lattice. We note that inside the sphere with diameter 2R0 the spherical lattice
lines are chosen equidistant and more dense than outside. R and D are given by Eqs. (3.9) and
(3.10). VS is introduced in Section 3.4.

the derivative of the Hamiltonian H with respect to the parameters aij which
represent the order parameter m. With m=m(aij)=const in a small volume
dV(r −

ij) around the position r −

ij the gradient in Eq. (3.14) is approximated by

“H({aij})
“aij

=
6
u

dV(r −){ − Dm+ym+m3 − H}|rŒ=rŒij
. (3.20)

Note that a constant prefactor in Eq. (3.20) can be absorbed by a rescaling
of o in Eq. (3.14). If Eq. (3.1) holds, i.e., if the expression in curly brackets
in Eq. (3.20) vanishes, Eq. (3.14) reduces to

a (n+1)
ij =a(n)

ij , (3.21)

i.e., the minimization has led to a fixed point solution of the iteration.
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For the minimization process the second derivatives of the order
parameter profile are needed [see Eq. (3.20)]. Since the order parameter is
calculated only at the discrete sites r −

ij, numerical differentiation must be
applied. For a numerical derivative, in general, it is preferable to have the
sites on an equidistant square lattice. However, it is also possible to deal
with derivatives on the conformal lattice. To this end we have used the
spline approximation (61) in order to interpolate between all the aij on each
of the lines of the conformal lattice (see Fig. 3). This approximation
directly yields the second derivative of the order parameter at the lattice
sites with respect to the variables parametrizing the lines. Under a con-
formal mapping angles are conserved, so that the lines in the conformal
lattice intersect perpendicularly which allows one to translate the derivati-
ves obtained from the spline approximation into derivatives with respect to
the cylindrical coordinates r −=(r, z).

3.4. Stress Tensor

With the tools now available to determine the order parameter profile
in the two sphere geometry the next step is to calculate the effective forces
between the two spheres. The straightforward way to determine such forces
is to calculate the free energy − kBT ln Z as function of the distance D
between the spheres, and then to estimate the derivative with respect to the
distance by considering finite differences. However, the total value of the
free energy is expected to be large as compared with the differences, and
thus one has to deal numerically with differences between large numbers,
which causes high inaccuracies. Therefore we resort to an alternative
method, in which the force is calculated directly using the so-called stress
tensor Tmn, which is defined by the linear response

dH=F
V

ddr
“bm

“xn

Tmn(r), (3.22)

where b is a non-conformal coordinate transformation, m and n index the
spatial coordinates, and dH is the corresponding energy shift. With the
Lagrangian L(m) in Eq. (3.18) it reads (45, 47, 62)

Tmn=
6
u
5 “L

“(“nm)
“mm − dmnL6 . (3.23)

The knowledge of the stress tensor on any infinitely extended surface which
separates the two spheres from one another, or likewise on any closed,
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finite surface which contains only one of the spheres, allows one to cal-
culate the force between the spheres. This is illustrated in terms of the
spherical volume VS with radius R2 containing the right sphere in Fig. 4.
Using the coordinate transformation

bz=a, -r ¥ VS

=0, -r ¨ VS

bn ] z=0,

(3.24)

the volume VS is shifted in z-direction by the amount a. The derivative “bm

“xn

then leads to a delta function such that the integral over the whole volume
V reduces to an integral over the boundary of VS. In this case the force
Fsing=kB Tc

R K with the universal scaling function K [see Eq. (1.1)] is given
by

−
“dH

“a
= −

“

“a
F

V
ddr

“bm

“xn

Tmn

= − F
“VS

dW nnTzn

= − 4pR2 3 F
p

0
dj sin2 j[Tzz(R2 , j) cos j+Tzr(R2 , j) sin j], (3.25)

where n is the unit vector perpendicular to the boundary “VS. The quanti-
ties used in the parametrization in Eq. (3.25) are sketched in Fig. 4.

Fig. 4. Calculating the force via Eq. (3.25). R2 is the radius of a sphere VS that contains one
of the spherical particles of diameter 2R. The projection onto the r-z-plane is parametrized
with the angle j. The interior of VS is shifted by the infinitesimal amount a, which is equiva-
lent to an infinitesimal change of the distance D between the two particles.
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In the geometry with cylindrical symmetry [m=m(r, z)] considered
here, Eq. (3.23) leads to

Tzz=
1
u
53 1“m

“z
22

+4
m
r

“m
“r

+2m
“

2m
“r2 −1“m

“r
22

− 3ym2 −
3
2

m46 (3.26)

and

Tzr=
1
u
54 1“m

“z
21“m

“r
2− 2m

“
2m

“r “z
6 , (3.27)

where the so-called improvement term − 1
u (NmNnm2 − dmnDm2) has been

added. (62)

In our calculation, we choose VS as indicated in Fig. 3, determine the
stress tensor at the lattice points, and use spline interpolations between
them. Note that the possibility of choosing different spherical surfaces
enclosing one of the spheres, which via Eq. (3.25) should all result in the
same force Fsing, provides a valuable and sensitive check for both the vali-
dity and the accuracy of the numerical results.

4. RESULTS FOR THE TWO-PARTICLE INTERACTION

The goal of this work is to provide a major step towards the under-
standing of aggregation of colloidal particles dissolved in a binary liquid
mixture close to criticality. In the previous section we explained the various
methods for obtaining the critical Casimir force between two spherical
particles of equal size. The results are presented in this section.

The aggregation phenomenon is driven by the dependences on the
temperature t=(T − Tc)/Tc and on the bulk composition cA of the solvent.
While the former is related to the temperature parameter y the latter is
related to the bulk field H. Thus also the Casimir force between two par-
ticles must be determined as a function of those two parameters. We
present results for the scaling function K±(D=D

R , G±= D
t±

, X=sgn(h) D
lH

)
which is related to the force F±

sing between the particles via Eq. (1.1). The
correlation length t± for H=0 depends on the temperature T as [see also
Eq. (2.2)]

t±=t±
0 |t|−n=˛y−1/2, y > 0

|2y|−1/2, y < 0
, H=0, (4.1)
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with n=1
2 within mean-field theory while the correlation length lH at Tc

depends on the bulk field H as

lH=l0
:cA − cA, c

cA, c

: −n/b

=
1

`3
|H|−1/3, y=0, (4.2)

where n/b=1 within mean-field theory; t±
0 and l0 are nonuniversal ampli-

tudes. The first parts of Eqs. (4.1) and (4.2) hold in general whereas the
second parts correspond to the present mean-field description. The scaling
variable X=sgn(H) D/lH depends on the sign of H [Eq. (1.1)]. The rela-
tion between the bulk field H and the concentration cA will be discussed
further in Section 4.7, but we keep in mind that a negative value of H
means that the fluid component, which is preferred by the particles, is the
one with a low concentration in the bulk (see Fig. 2).

4.1. Dependence on Temperature at the Critical Composition

The variation of the temperature leads to an interesting behavior of
the force. (47) According to Fig. 5 the force exhibits a maximum for a tem-
perature above the critical point. The position of the maximum of the force
as function of the scaling variable G+ depends on the distance D between
the particles. In the limit of large distances the position Gmax=Gmax(D,
X=0) of the maximum approaches that one of the critical point, i.e.,

Gmax
1D=

D
R
Q .2

Q 0. (4.3)
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Fig. 5. Force between two particles as function of temperature T > Tc and for H=0 relative
to the force at criticality. The force is maximal for G+=Gmax(D) as indicated by the dots.
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On the other hand, for small distances the position of the maximum
approaches a finite value above Tc

Gmax(D Q 0) Q G (0)
max. (4.4)

These two limiting behaviors are shown in Fig. 5. The disappearance of the
maximum for large distances along with the derivation of the small radius
expansion will be discussed in more detail later on in this section.

4.2. Dependence on Composition at the Critical Temperature

The above results show that there are rich structures in the force
curves off criticality. Therefore it is important to monitor the force not
only at the critical point, but also in its vicinity. This becomes even more
evident if not the temperature but the composition of the solvent is varied.
Along the dashed path in Fig. 2 and for small distances D the force exhibits
a pronounced maximum as can be seen in Fig. 6. For large distances there
is only a maximum at the critical point, i.e., H=0. For X > 0 the force
decays monotonic for all distances D.

Figure 7 shows the maximum values of the force for a given distance
D as function of the temperature (solid line in Fig. 2) or the composition
(dashed line in Fig. 2). For comparison, also the force at the critical point
for the same particle distance D is plotted (dash-dotted line in Fig. 7). For
intermediate and larger distances the three lines merge, which is due to the
fact that for large distances the position of the maximum of the force
approaches that of the critical point. For small distances the differences are
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(∆

,0
,0
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∆ = 2

∆ = 10

•

∆ = D / R

•

∆ = 2

T = Tc

Fig. 6. Force between two particles as function of the bulk field H at T=Tc relative to the
force at criticality (y, H)=(0, 0). The force is maximal for X=Xmax(D) as indicated by the
dots.
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Fig. 7. Maximum force values as function of distance. For small distances the force increa-
ses as D−5/2 which is scaled out here. Accordingly, the forces are normalized by the value
K0=limD Q 0(D5/2K+(D, 0, 0)) at the critical point in the limit of vanishing distance. For large
distances the forces decay as D−2 b/n − 1, i.e., as D−3 within mean-field theory so that D5/2K+

decays as D−1/2. G+=D/t+ and X=sgn(H) D/lH.

pronounced. Obviously, the composition of the solvent plays an important
role.

4.3. Dependence on Temperature off the Critical Composition

So far the thermodynamic paths were chosen such that either the
temperature or the solvent composition were fixed at their critical point
value. However, it is experimentally relevant to consider also thermody-
namic paths along which the temperature is varied at fixed compositions
cA ] cA, c. The corresponding results are given in Fig. 8 for a fixed dis-
tance D. For small deviations |cA − cA, c | ° cA, c the position of the
maximum of the Casimir force is more or less unchanged while its absolute
value is changed considerably. However, the main features of the tempera-
ture scan do not differ much from that at cA, c so that they are sufficiently
robust in view of possible experimental tests with finite resolution for cA.

If the dotted path in Fig. 2 is extended to temperatures below Tc the
force is analytic as function of the temperature until the path intersects
with the coexistence line.

4.4. Derjaguin Approximation

In the limit that the radius R of the spherical particles is much larger
than both the correlation length t and the distance D of closest approach
surface-to-surface between the two particles, the particles can be regarded
as composed of a pile of fringes. Each fringe builds a fringe-like slit
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Fig. 8. Force between two particles as function of temperature for fixed compositions
cA ] cA, c which implies fixed values of mb

g=mb Db/n. Considering the dotted path in Fig. 2,
i.e., for mb=const [for a relation between mb and Mb ’ (cA − cA, c) see, cf., Eq. (4.19)] both
thermodynamic variables y and H and thus both scaling variables G+=D/t+ and X=
sgn(H) D/lH are varied simultaneously [see, cf., Eq. (4.17)]. The Casimir force increases by
going further away from the critical composition.

with distance L=D+r2
||/R, where r|| is the radius of the fringe. Within this

Derjaguin approximation (63) and in d=4, the force between the particles in
units of kBTc

R [see Eq. (1.1)] is given by

K±(D, G±, X)=4pD−5/2 F
.

0
du u2 K ||

±(G±(1+u2), X(1+u2))
(1+u2)4 , (4.5)

where u is a dimensionless integration variable and K ||
±(L/t±, sgn(H) L/lH)

is the analogous scaling function for the Casimir force in the slit geometry
with parallel walls at distance L [see, cf., Section 5].

4.5. Small Radius Expansion

If on the other hand the radius R—albeit large on the microscopic
scale—is much smaller than D and t, the statistical Boltzmann weight e−dHS

characterizing the presence of the sphere centerd at rS can be systematically
expanded in terms of increasing powers of R, (45) i.e.,

e−dHS/d
‘
=1+cF

‘
RxF F(rS)+cF

2

‘
RxF2 F2(rS)+ · · · (4.6)

where d
‘

is an amplitude and where xF=b/n and xF
2=d − n−1 (with the

standard bulk critical exponents b and n) are the scaling dimensions of
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Y=F, F2. The ellipses stand for contributions which vanish more rapidly
for R Q 0. The coefficients cY

‘
are fixed by cY

‘
=AY

‘
/BY, where AY

‘
and BY,

respectively, are amplitudes of the half-space (hs) profile OY(z)P ‘

hs, T=Tc
=

AY
‘

(2z)−xY at the critical point of the fluid for the boundary condition ‘

corresponding to critical adsorption, and of the bulk two-point correlation
function OY(r) Y(0)Pb, T=Tc

=BYr−2xY. (45) Since both spheres are equally
small the free energy F follows from the bulk average of two statistical
weights of the type given in Eq. (4.6):

F(D) −F(.)
kBTc

=−ln 5 Oe−dHS1e−dHS2Pb

Oe−dHS1Pb Oe−dHS2Pb

6 , (4.7)

where the spheres S1 and S2 are a distance D apart from each other. Using
Eq. (4.6) we find (47)

F(D) −F(.)
kBTc

=−(cF
‘
RxF )2 OF(rS1

) F(rS2
)Pb [1 − 2cF

‘
RxFOFPb+ · · · ],

(4.8)

where OF(rS1
) F(rS2

)Pb is the bulk two point correlation function and OFPb

provides a measure of the deviation of the bulk composition from its value
at the critical point. The Casimir force is the derivative of the free energy
with respect to the distance D between the spheres. Note that in Eq. (4.8)
the first term in the square brackets gives rise to an attractive force which is
increased by the second term if OFPb is negative, i.e., if the binary liquid
mixture is poor in the component preferred by the colloids (compare
Secs. 4.2 and 4.3).

Within mean-field approximation, the correlation function is given by
(see Eq. (B5) in ref. 64)

OF(rS1
) F(rS2

)Pb=G+
b (|r1 − r2 |=D; t+)

=BF

1
Dd − 2

22 − d/2

C( d − 2
2 )

1 D
t+

2
d − 2

2
K d − 2

2
(D/t+), (4.9)

z
Q 1, T Q Tc

where K(d − 2)/2 is a modified Bessel function and where t+=lH for the case
y=0 and H ] 0. Thus as expected two point-like perturbations of the bulk
do not exhibit a rich interaction structure but a monotonic decay. If a small
sphere is immersed at a distance D from another small sphere with a given
adsorption profile, the resulting perturbation of this profile leads to an
effective interaction. At those distances, at which the small radius expan-
sion can be applied the profile of the distant sphere is already close to the
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bulk value. This differs from the system studied in ref. 47 where a small
sphere in front of a planar wall is considered. In that case the sphere is
exposed to the half-space adsorption profile which is a much stronger per-
turbation of the bulk order parameter than that of a sphere (compare
refs. 41 and 42).

4.6. Comparison with Dispersion Forces

It has been stressed above that the Casimir forces depend sensitively
on both temperature and composition of the solvent. The Casimir forces
add to the omnipresent dispersion forces, which also depend on the ther-
modynamic state of the solvent. However, this latter dependence is smooth
and—within the critical region of interest here—it is weak. Therefore the
dependence of the Casimir force on temperature and concentration allows
one to extract it from the actual total force which is the only one which is
experimentally accessible. As an example for a binary liquid mixture we
consider a water-lutidine mixture for which the critical temperature is
Tc=307.1 K. (3) The strength of the dispersion forces is characterized by the
Hamaker constant, which for a system of silica spheres immersed in such a
mixture is approximately A=10−20 J. Figure 9 shows the comparison of the
dispersion forces and of the Casimir forces at the critical point for spheres
with a typical radius R=100 nm which add up to the total force

Ftot(D, 0, 0)=
kBTc

R
K+(D, 0, 0)+Fdisp(D). (4.10)
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Fig. 9. Comparison of dispersion forces and Casimir forces at the critical point (T=Tc,
cA=cA, c) as function of the distance D in units of the sphere radius R. The forces are shown
for both a sphere in front of a planar wall (SW) and for two spherical particles (SS). For a
detailed discussion see the main text.
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The dispersion forces are given by (65)

Fdisp(D)=−
A
R

32
3

1
(D+2)(D2+4D+4)(D+4)2 D2 , (4.11)

where A is the aforementioned Hamaker constant. In the limit of small
distances the Casimir force is known from the Derjaguin approximation

K+(D Q 0, 0, 0)=−p D
‘‘

D−2, (4.12)

where D
‘‘

=0.326 is the estimate of the Casimir amplitude in d=3, (28) and
in the limit of large distances the Casimir force can be obtained from the
small radius expansion (50)

K+(D Q ., 0, 0)=−2
b

n
A

‘‘
(D+2)−2 b/n − 1, (4.13)

where b/n=0.52 and A
‘‘

=
(AF

‘
)2

BF
=7.73. (47)

In Fig. 9 also the forces between a single sphere and a planar wall
are shown, as considered in ref. 47. The dispersion forces then read
Fdisp(D)=−A

R
2
3

1
(D+2)2 D2 , where D is the surface-to-surface distance in units of

the radius R. For small distances the amplitude of the Casimir force is two
times bigger than in the case of two spheres while for large distances the
small radius expansion leads to (50)

K+(D Q ., 0, 0)=−2
b

n
A

‘‘
(2 D)−b/n − 1. (4.14)

For small distances all forces increase as D−2, only the amplitudes differ
from each other. The values considered for A and Tc lead to Casimir forces
that are about ten times larger than the dispersion forces. For large dis-
tances, however, the (unretarded) dispersion forces (’ D−7) decay faster
than the Casimir forces (’ D−2.04). (Ultimately retardation of the dispersion
forces leads to a decay ’ D−8 and ’ D−5 for SS and SW, respectively.) For
D=1 the Casimir forces between the two spheres are about fifty times
larger than the dispersion forces such that the latter contribution to the
total force [Eq. (4.10)] can be neglected. For a sphere in front of a planar
wall and for large distances the Casimir forces (’ D−1.52) decay even slower
than they increase for small distances (’ D−2).

4.7. Equation of State

For the demixing transition of a binary liquid mixture the difference
(mA − mB) − (mA − mB)c of the chemical potentials of the two components is
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proportional to the bulk field h. The potential difference leads to a concen-
tration cA ] cA, c of species A in the bulk. The bulk order parameter Mb is
proportional to the concentration difference Mb=A(cA − cA, c), where the
amplitude A depends on the actual definition of the order parameter. For
such a system in the vicinity of its critical point the equation of state is
given by (66)

h=DMd
bf 1 t : B

Mb

: 1/b2 , (4.15)

where b and d are the standard critical exponents, D and B are nonuniver-
sal amplitudes, and the scaling function f(x)=1+x describes the cross-
over between the critical behavior at t=0 and h=0, respectively. Equa-
tion (4.15) yields Mb=± B |t|b for h Q 0 and Mb=( h

D
)1/d for t Q 0 as

limiting cases. The choice of the amplitude D defines a field h. Since,
however, the combination e > dV hMb is the field contribution of the statistical
weight of the system, D is fixed by the amplitude of the chosen order
parameter.

Away from the critical point the two point correlation function decays
for large distances r exponentially as Gb(r) ’ exp(−r/t)/r (d − 2)/2, with the
true correlation length t. Within mean-field theory, where one has b=1

2
and d=3, this correlation length is equivalent to that one derived from the
second moment of the correlation function, which in momentum space is
given by G̃b(q) ’ 1

q2+t − 2 . From this relation one infers (34)

t=(y+3m2
b)−1/2, (4.16)

with mb obtained from the mean-field equation of state:

H=ymb+m3
b . (4.17)

Equations (4.16) and (4.17) lead to the mean-field expressions of the corre-
lation lengths t± and lH in Eqs. (4.1) and (4.2), respectively. The correlation
lengths are experimentally accessible by measuring the scattering structure
factor. This allows one to determine the nonuniversal amplitudes t±

0 and l0

in Eqs. (4.1) and (4.2). By measuring the coexistence curve Mb=± B |t|b

the nonuniversal amplitude B is obtained.
However, the amplitude l0 in Eq. (4.2) is fixed once t+

0 and the non-
universal amplitude B are known:

l0=t+
0
1 B
AcA, c

2n/b 1 Q2

dRq

2n/c

, (4.18)
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where the first term in parantheses is nonuniversal—but it does not depend
on the definition of the order parameter—and Q2 and Rq are universal
amplitude ratios (67) leading to (Q2/dRq)n/c % 0.38 in d=3.

Using Eq. (4.1) and mb=`|y| one finds a relation between the order
parameter mb in the present model and the order parameter Mb defined in
an actual experiment:

mb=
1

(`2 t−
0 )b/n

Mb

B
. (4.19)

We note that in a magnetic system the bulk field H is directly accessible,
while for liquids we use the correlation length lH as a measure of the bulk
field H according to Eq. (4.2). So far we have assumed that the coexistence
curve close to the critical demixing point is symmetric with respect to the
temperature axis. However, this might not be the case in a real liquid
mixture, so that one would then have to use appropriate linear combina-
tions of the thermodynamic variables.

5. RESULTS FOR THE FILM GEOMETRY

In the previous section [see Eq. (4.5) in Section 4.4], within the
Derjaguin approximation, we have used results obtained for the film
geometry in order to analyze the limiting case of the colloidal particles
being very close to each other. Besides that the film geometry is of consid-
erable interest in its own right as the generic case for simulations (68, 69) and
for experimental studies involving wetting films (5, 31) or force microscopes
with crossed cylinders of large radii of curvature. The Casimir forces in the
film geometry have been considered for walls that do not break the sym-
metry of the order parameter (26) and also for symmetry breaking walls. (28)

However, most studies focus on the temperature dependence only, while in
the following we consider also the case H ] 0.

For the film geometry the same numerical methods can be used as
described in Section 3. However, since the system is effectively one-dimen-
sional there are additional methods available. For instance, the first
integral of the second-order differential equation (3.1) can be found analy-
tically. (28) The integration constant, which follows from fulfilling the
boundary conditions is proportional to the force (see App. A in ref. 28).
For H=0 the second integration leads to elliptic integrals, while for H ] 0
it must be carried out numerically.

First we obtain the scaling function K ||
±(L

t
, L

lH
) of the singular contri-

bution to the force between two parallel plates at distance L for the various
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Fig. 10. Normalized scaling function K ||
+ of the force for a film with thickness L at Tc, i.e.,

G+=L/t+=0 as function of the scaling variable X=sgn(H) L/lH.

thermodynamic paths shown in Fig. 2. The temperature dependence (solid
path) of the force is discussed in refs. 28 and 47 (see in particular Fig. 3 in
ref. 47) and reveals a maximum of the force at Gmax=L/t+=1.94. As a
new result the dependence of the force on the bulk field H (dashed path) is
shown in Fig. 10 in terms of the scaling variable X=sgn(H) L/lH.

It is remarkable that the force maximum is about ten times larger than
the force at the critical point. Since this scaling function enters into the
expression for the force between two spheres this peak structure carries
over to that case, too. Indeed, Fig. 7 shows that the force maximum in the
limit of two very close spheres is about five times higher than the force at
the critical point.

Figure 11 shows the dependence of the force on the bulk field for
T ] Tc. Above Tc one finds a similar structure like at Tc except that the
maximum is less pronounced. (Here we refer to the maximum value of the
modulus of the force. However, in order to facilitate an easy comparison
with the results of ref. 70 in Fig. 11 the sign of the force is chosen such that
it reveals its attractive nature.) Slightly below Tc the maximum is more
pronounced although the form of the curve is still the same. But at still
lower temperatures the character of the curve changes. Instead of a smooth
increase upon increasing the bulk field towards H=0 there is a jump from
a small value of the force to a high one. This is accompanied by a first-
order transition of the corresponding order parameter profile.

Figure 12 shows the two coexisting profiles at the critical field of this
first-order phase transition for various temperatures T < Tc. The profiles,
which are negative in the middle of the film, correspond to the weaker of
the two respective forces. This means that the forces are weaker if the
solvent component preferred by the surfaces is the one in which the bulk
solution is poor. These first-order phase transitions correspond to capillary
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curves are stable further away from bulk coexistence whereas for the upper ones capillary
condensation has taken place. Above the critical point of capillary condensation (see Fig. 13)
the profiles look similar to the upper ones.
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approach. The transition line ends in the capillary critical point (G− =7.17, X=−9.54). The
straight line ending at (G− =0, X=0) is the line of first-order phase transitions in the bulk.

condensation in the slit which can occur for fixed temperature as function
of H as shown in Figs. 11 and 12 or as function of temperature for fixed
values of H. The loci of these capillary condensation phase transitions are
shown in Fig. 13. The transition line ends in the capillary critical point
(G− =7.17, X=−9.54) which is in quantitative accordance with the find-
ings for the critical point shift. (71)

In ref. 70 the solvation forces between two parallel plates confining a
two-dimensional Ising spin system have been calculated. They exhibit the
same features as those found in the present mean-field calculations valid for
spatial dimensions d \ 4. For temperatures far below Tc upon increasing the
field the force jumps from a small to a large absolute value and then varies
linearly as function of the bulk field (compare Fig. 11). In the linear regime
the solvation force is given approximately by K ||

− /L4=2m̄(T) H, (70) where
the bulk spontaneous magnetization m̄(T), i.e., the magnetization at H=0
is m̄=|y|1/2 within mean-field approximation which indeed gives the slope
of the linear parts in Fig. 11. We note that in d=2 capillary condensation
can be identified only as a quasi-phase-transition whereas in d=4 there
is indeed a bona fide first-order phase transition. Figure 14 shows the
difference dK ||

− between the two corresponding force values at the tran-
sition. Upon approaching the capillary critical point this difference
vanishes. Along the coexistence line H(T) of capillary condensation the
quantity 2m̄(T) H(T) provides a good account of the force difference
(see Fig. 14).
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The findings in d=2 and d=4 agree to a large extent qualitatively.
Quantitatively, however, the results in d=2 and d=4 differ significantly.
For example the ratio of the maximum force and of the force at the critical
point as function of the bulk field and for T=Tc is K ||

+(0, Xmax)/K ||
+(0, 0)

% 100 in d=2 and K ||
+(0, Xmax)/K ||

+(0, 0) % 10.1 in d=4. A simple linear
interpolation yields an estimated value of K ||

+(0, Xmax)/K ||
+(0, 0) % 55 for

this ratio in d=3. Thus the studies in ref. 70 and the present ones can be
used to obtain quantitative estimates for the actual behavior in d=3.

6. CONCLUDING REMARKS AND SUMMARY

We have studied the critical adsorption profiles and the effective free
energy of interaction for a pair of colloidal particles which are immersed in
a binary liquid mixture near its critical demixing point. Our results pertain
to the whole vicinity of the critical point of the binary liquid mixture, i.e.,
they are given as function of both the reduced temperature t=(T − Tc)/Tc

and the field h conjugate to the order parameter (see Fig. 2 and Section 4).
In an ensemble of colloidal particles dissolved in a near-critical

solvent, the critical Casimir forces between them are expected to lead to
flocculation of the particles. This holds even in cases where dispersion
forces alone are not strong enough to produce such a phase transition (see
Section 4.6). Indeed, such a flocculation of colloidal particles has been
observed experimentally for various binary liquid mixtures. (3–8) In particu-
lar, these experiments exhibit an asymmetry in the shape of the observed
flocculation diagrams in that flocculation occurs on that side of the phase
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diagram where the binary liquid mixture is poor in the component pre-
ferred by the colloids. Our results are consistent with this observation, since
we indeed find that the critical Casimir forces are strongest in this region of
the phase diagram (see Secs. 4.2, 4.3, and 4.5).

In the following we summarize the main results of this work:

1. For two spherical particles of radius R at a distance D (see Fig. 1)
we have investigated the effective interaction mediated by the solvent, such
as a binary liquid mixture. This effective interaction depends on the ther-
modynamic state of the solvent, for which the phase diagram is sketched in
Fig. 2.

2. The solvent is described by a field-theoretic model, provided by
the Ginzburg–Landau Hamiltonian [Eq. (2.1)], with additional terms
representing the solute spheres. We solve this model within mean-field
theory as described in Section 3.

3. (3.1) The profile at the critical point is obtained by a conformal
mapping of the corresponding profiles between concentric spheres. (3.2)
Close to the surface of either sphere the short distance expansion of the
profile is valid, which is carried out off the critical point. (3.3) For the
determination of the complete profiles we first discretize the space using the
conformal lattice shown in Fig. 3 and then apply the method of steepest
descent for the order parameter at the lattice points. (3.4) From the order
parameter profiles the force between the spheres is calculated by integrating
the stress tensor. The choice of this integration path is indicated in Fig. 4.

4. The results for the two-particle interaction are presented in Sec-
tion 4. (4.1) The dependence of the force on the temperature at the critical
composition is shown in Fig. 5. It exhibits a maximum above Tc which
approaches that of the critical point for large distances. (4.2) The depen-
dence of the force on the composition at the critical temperature is shown
in Fig. 6. It exhibits a pronounced maximum whose position also
approaches that of the critical point for large distances. The values of the
maximum of the force determined for various distances are shown in
Fig. 7. For small distances these values differ significantly from the value at
the critical point. (4.3) In Fig. 8 the dependence of the force on the tem-
perature for fixed compositions off the critical one is shown. (4.4) Using
the knowledge of the force between parallel plates the Derjaguin approxi-
mation can be applied for small particle distances. (4.5) The small radius
expansion can be applied for large particle distances regarding the spheres
as perturbation of the bulk phase. This expansion yields nonperturbative
results for d=3. In leading order the small radius expansion leads to
forces which exhibit a maximum only at the critical point. (4.6) In Fig. 9 a
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comparison of the Casimir forces and the dispersion forces at Tc and in
d=3 is shown. For large distances the dispersion forces decay faster while
for small distances the amplitudes are smaller than those for the Casimir
forces. Moreover, the temperature and composition dependences of the
Casimir forces allow one to distinguish them from the dispersion forces.
(4.7) Relations between thermodynamic quantities as they are used in the
present model and their experimental counterparts are discussed.

5. In Section 5 results for the case of parallel plates are presented,
which are used via the Derjaguin approximation for the limiting case of
small particle distances. Moreover, the present mean-field results are in
qualitative agreement with corresponding results for a two-dimensional
Ising spin system obtained in ref. 70. Figure 10 describes the dependence of
the force on the bulk field H at the critical temperature. In Fig. 11 the
dependence of the force on the bulk field is shown also for temperatures
considerably below Tc. As H is increased the force jumps from a small
absolute value to a large one. This is accompanied by a first-order phase
transition of the corresponding order parameter profiles as shown in
Fig. 12. These first-order phase transitions correspond to capillary con-
densation in the slit and their loci are displayed in Fig. 13. The transition
line ends in the capillary critical point. In Fig. 14 the size of the jump of the
force at capillary condensation (see Fig. 11) is plotted as function of the
bulk field. Away from the capillary critical point this difference is well
approximated by an estimate in which only the order parameter value for
H=0 at the transition temperature and the corresponding bulk field enter.

ACKNOWLEDGMENTS

We thank E. Eisenriegler and A. Maciołek for helpful and stimulating
discussions. We acknowledge partial financial support by the German
Science Foundation through Sonderforschungsbereich 237 (FS) and Grant
HA3030/1-2 (AH). A.H. also acknowledges financial support by the
National Science Foundation through Grant 6892372 and by the Engineering
and Physical Sciences Research Council through Grant GR/J78327.

REFERENCES

1. M. E. Fisher and P. G. de Gennes, C. R. Acad. Sc. Paris B 287:207 (1978).
2. This conjecture has been worked out in more detail in P. G. de Gennes, C. R. Acad. Sci.

Ser. II 292:701 (1981).
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A. Drzewińzki, and R. Evans, Phys. Rev. E 64:056137 (2001).
71. H. Nakanishi and M. E. Fisher, J. Chem. Phys. 78:3279 (1983).

Critical Casimir Forces in Colloidal Suspensions 1013


	1. INTRODUCTION
	2. FIELD-THEORETIC MODEL
	3. ORDER PARAMETER PROFILES
	4. RESULTS FOR THE TWO-PARTICLE INTERACTION
	5. RESULTS FOR THE FILM GEOMETRY
	6. CONCLUDING REMARKS AND SUMMARY
	ACKNOWLEDGMENTS

